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LE’ITER TO THE EDITOR 

Non-linear conductivity of granular superconductors: a novel 
breakdown problem 
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f IBM T J Watson Research Center, Yorktown Heights, NY 10598, USA 
8 Department of Applied Physics, Stanford University, Stanford, CA 94305, USA 

Received 1 1  June 1987 

Abstract. We study a percolating network of highly hysteretic Josephson junctions in which 
each junction is modelled as a piecewise Ohmic hysteretic device. At the percolation 
threshold, the average voltage drop across a network on a large L x L grid is assumed to 
fall to zero as V - ( I - I c ( L ) ) n  as the applied current is reduced to the critical current 
I c ( L ) .  Our finite-size Monte Carlo study gives the value 7 =2.0*0.1. This value is 
remarkably close to the result 7 = 2 obtained by a scaling analysis of a continuum version 
of the model. 

There is currently much interest in the properties of random media which are changed 
irreversibly by an applied force [l-51. Examples include electric breakdown in a 
random network of resistors which short out above a critical voltage [ 11, ‘burn out’ in 
a random network of fuses [2], and fracture of brittle materials represented by networks 
of Hookean springs with a load limit [3]. 

In this letter we study a new problem in this general class of ‘breakdown’ problems: 
the onset of superconductivity in a percolating network of highly hysteretic Josephson 
junctions which occurs as the applied current is reduced. In contrast to earlier work 
on granular superconductors, we are able to probe the finite-voltage response of highly 
disordered networksti. We assume that the average voltage drop across a large L x  L 
network at the percolation threshold falls to zero as V - ( I  - I,( 15))~ as the current I 
is lowered to the critical current Zc(L). The finite-size Monte Carlo study described 
below yields the value 7 = 2.0k0.1 for the critical exponent 7 in two dimensions ( 2 ~ ) .  

Neither 7 nor analogous exponents in other breakdown problems have previously 
been determined. A continuum ‘Swiss cheese’ version of the model is then studied 
using an approximate scaling approach and is found to have 7 = 2 in all dimensions 
d 5 2. Finally, we show how this theory can be applied to a variety of continuum 
breakdown problems. 

In our discrete model, each site of a square lattice is occupied by a superconducting 
‘grain’ with probability p and by an insulating grain with probability 1 - p .  Adjacent 
grains are connected by Josephson junctions. We neglect the detailed phase dynamics 

$ Address after 1 September 1987: Department of Physics, Colorado State University, Fort Collins, CO 
80523, USA. 
11 The zero-voltage limit of random superconducting networks is well understood: see, for example, [6] and 
references therein. Also note that the reversible non-linear conductivity of metal-insulator mixtures at the 
percolation threshold has recently been studied [7]. 
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of the problem and instead model the junctions by piecewise Ohmic hysteretic devices. 
To be specific, we assume that a single junction behaves as a Ohmic resistor with unit 
resistance as the applied current is reduced from infinity. Once the junction critical 
current I :  is reached, the voltage drops irreversibly to zero. Thus, for large applied 
currents the network is in the purely Ohmic state. As the current is reduced, a junction 
goes superconducting at some point and the resistance of the network drops discon- 
tinuously. More and more junctions switch into the zero voltage state as the applied 
current is further reduced, until at the critical current for the network the voltage drops 
to zero. It is important to note that once a junction has become superconducting in 
our model, it remains in this state even if the current through it exceeds I :  at some 
later time. Although the I -  V curve for a particular network is discontinuous, it becomes 
continuous when averaged over an ensemble of networks. The average I -  V curve 
obtained in this way governs the behaviour of the system only when the applied current 
is being reduced: the resistivity remains constant if the applied current is increased. 

There are several approximations inherent in this model. Real Josephson junctions 
have a second critical current ZL > Z: above which they must return to the Ohmic state; 
however, if I :  >> 1: we may safely ignore the possibility that some junctions could 
temporarily revert to the resistive state as the applied current is lowered. In addition, 
the resistive branch of the junction I -  V curve is not Ohmic close to the critical current. 
Thermal and quantum fluctuations are neglected entirely. Finally, the most serious 
failing of our model is its crude treatment of the non-linear phase dynamics of the 
network of Josephson junctions. However, the full non-linear dynamics problem for 
a collection of junctions has only been studied for three coupled junctions [ 8 ] ,  and 
for a chain of coupled junctions [9]. Our model, albeit simple, should display some 
of the features of real granular superconducting thin films at finite voltages. 

Let us first consider the behaviour of an infinite square network for p > p ,  = 0.592 77. 
Initially the applied voltage is large and the current passing through each junction is 
the same as if the junction Z- V curves were purely Ohmic. Therefore the resistivity 
of the array p scales like p - ( p - p c ) ‘  for small positive p - p c  when the voltage is 
large. (In 2 ~ ,  t = 1.3.) As the applied voltage is reduced the resistivity drops until it 
falls to zero at some critical current density j,( p ) .  The nodes-and-links approximation 
[lo-131 predicts that 

j c  - ( P - pC)” asp+pc .  (1) 
This is in good agreement with Monte Carlo results [12, 131 and with critical current 
measurements on thin film superconductor-semiconductor mixtures [ 141. 

At the percolation threshold, the critical current density j ,  is zero in the infinite-size 
limit. For finite systems, a simple scaling argument combined with the nodes-and-links 
result ( 1 )  shows that j,( L )  - L-’ for large L. The voltage drop per unit length across 
a large network falls to zero as [ j - j,( L)]’ as the applied current density j is reduced 
toward j,( L ) .  To obtain an estimate of the exponent 7 we will use finite-size scaling 
to extrapolate our Monte Carlo results on L x L arrays to the L = 03 limit. It is natural 
to assume that estimates of 7 obtained for L x  L arrays, denoted 7 ( L ) ,  may be 
extrapolated to L = 03 using the scaling form v( L )  - 7( 1 + AL-’ + BL-A +. . .), just as 
in finite-size studies of equilibrium critical phenomena [ 151. 

To obtain the required finite-size estimates of 7, we randomly generated junction 
networks on L x L square grids with L = 6,8,10,12,16 and 24 at p = p , .  Superconduct- 
ing grains in the top and bottom raws of a particular array were connected by Josephson 
junctions to terminals at voltage V and zero respectively. Finally, the network was 
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discarded and another was generated if no conducting pathway ran from terminal to 
terminal. 

The next step was to construct the I -  V curve for this array. Dangling bonds carry 
no current and so were removed using the 'burning' algorithm of Herrmann er a1 [ 161. 
The terminal voltage V was then set at a high initial value and Kirchhoff's laws were 
solved for the voltages on the backbone sites with all the junctions in the Ohmic state. 
In some networks, one or more bonds with special geometrical symmetries carried no 
current. The nodes at either end of these bonds were merged to form single supercon- 
ducting grains, and Kirchhoff's laws were again solved. This process was repeated 
until all bonds carried non-zero current, and then the initial value of the network 
resistivity was recorded. 

The linearity of Kirchhoff's laws show that as the applied voltage is reduced, the 
I -  V curve remains linear until a junction goes superconducting. Once the first junction 
which switches to the superconducting state and the applied voltage at which this 
occurred were found, the sites at either end of this bond were merged into a single 
superconducting node. Kirchhoff's laws were solved again at this applied voltage and 
any new bonds which had current less than I :  passing through them were switched 
to the zero voltage state. The applied voltage was then lowered until another junction 
went superconducting, and the voltage was again held constant until junctions stopped 
switching. This processes was repeated until the entire network had switched into the 
superconducting state. 

The I -  V curves obtained in this way vary greatly from sample to sample, so curves 
for a very large ensemble of 214 networks were averaged together. The resulting 
quasicontinuous I -  V curves yield values for the critical current densities j,( L )  which 
compare favourably with the nodes-and-links prediction j,( L )  - L-I. A finite-size 
estimator 7 ( L )  for 77 was obtained by fitting the averaged I -  V curve for L x L networks 
to the form V - [ j - jc(  L)]"'"' over the interval 0.005 sj - jc (  L )  < 0.1. To obtain an 
error estimate for 7 ( L ) ,  we divided the ensemble into 32 sets of 512 networks. A value 
of 7( L )  was obtained for each of these sets, and the standard deviation of these values 
was adopted as the error in 7 ( L ) .  The results (figure 1) were extrapolated to L = 03 

using our scaling ansatz and assuming that A >  1. This yielded the final result 7 = 
2.0* 0.1. 

3 1  E 1 .I 

.'i 1.5 0 0.0 4 0.08 L-'  0.12 0.1 6 

Figure 1. Values of q( L) plotted against L-'. The straight line is a linear least-squares fit 
to the data for L P 8. 
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To gain some insight into this result, we apply the nodes-and-links approximation 
[IO, 111 to a continuum ‘Swiss cheese’ version of the discrete problem?. In the 
continuum problem, discs of radius a of a non-linear, hysteretic conductor are placed 
randomly in a perfectly insulating 2D medium. The conducting material has resistivity 
po as long as the current density passing through it remains above the critical value 
jo ,c ,  but when j drops below jO,cr the resistivity drops irreversibly to zero. Thus, the 
current-voltage relationship for this non-linear, hysteretic conductor is the same as 
that for a regular array of our ‘Josephson junctions’. The continuum problem can be 
thought of as a disordered granular network in which the length scale of the disorder 
is much larger than the grain size; in the original discrete problem these two lengths 
are comparable. 

When the applied voltage is large and the volume fraction of conductive material 
p exceeds the critical value p c ,  all of the conducting material in the continuum model 
is in the Ohmic state. The nodes-and-links analysis of Halperin et a1 [18] predicts 
that in this regime the resistivity scales like p - ( p  - p c ) ‘  with t = 1 in d = 2 .  This is 
the same value of I obtained when the nodes-and-links approximation is applied to 
the usual random resistor problem, so we might expect our continuum and discrete 
models to have similar behaviour close to their respective critical currents. 

In the low-voltage limit, the resistance of the system will come entirely from 
‘bottlenecks’ at the intersection of discs with small overlap. We first compute the 
current-dependent resistance R (  I )  of one such constriction with minimum width 6 << a 
(see figure 2 ) .  For currents I just above the critical current for the constriction jo,cS, 
the length of the resistive region 2x0 is small. As a first approximation, we take the 
current density to be independent of y within the bottleneck. The length 2x0 is then 
given by 2j0, ,y(xO) = I ,  where y ( x )  > 0 is they coordinate of the disc in the first quadrant. 
When xo is small, 2 y ( x )  = 6 + 4 a x / 6  for O S  x 6 xo ,  so xo= ( 4 a j 0 , c ) - 1 6 ( I  - j o . c S ) .  Using 
these results, we find that the resistance of the bottleneck is 

for S<< a and Z- j0 ,$  small and positive. 

Figure 2. Intersection of two discs of radius a showing the minimum width of the 
constriction S. The region in the Ohmic state (hatched area) has length 2x,. 

? Ideally, one would like to use this approximation to study the discrete problem. However, the I -  V curve 
for the percolating network has the same form as that for a single junction in this approximation. Presumably 
an improved version of the nodes-and-links picture, such as the links-and-blobs approach [17], is needed. 
Unfortunately, not enough is known about blob structure to carry out this calculation. 
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We next must determine how the bottleneck resistances are distributed and how 
they combine to give the resistivity of the entire network. In the nodes-and-links 
picture, the conducting backbone is composed of a network of quasi-one-dimensional 
‘strings’ which join a set of nodes whose typical separation is the correlation length 
6 - ( p  - p , ) - ” .  Each string consists of a tortuous path of L ,  + 1 - ( p  -pc)-’  overlapping 
discs connected in series. If we ignore correlations within the backbone, the probability 
that the width of the constriction formed by overlapping discs is 6 is p ( S ) = $ / a 2 .  
According to the sampling theory of order statistics [ 191, the mean minimum value 

of a large sample of L ,  widths 6 with this distribution is ami,, = 2a2/ L ,  . The mean 
critical current for the string is therefore 

We now estimate the current-dependent resistance of the string, Rstring( I ) ,  given 
the value of For p - p ,  small, L ,  is large and a sum over the constrictions may 
be replaced by an integral: 

= 2j0,,a2/ L ,  . 

The small 6 cutoff in this integral ensures that the string resistance falls to zero at the 
string critical current+. Inserting our expression for p (  8)  in (3) ,  we obtain Rstring( I )  - 
L16min(Z -jo,c6min)2 for I + The resistivity of the entire network is therefore 
p ( j )  - Rstring((j) - ( p  -p,)-’”[j - j,( p)]’ for p - p c  small and j +Ic( p ) + .  The critical 
current density scales like j,( p )  - ( p - p , )  ”+’ as p + p: .  This differs from the nodes-and- 
links result for the discrete problem (equation (1)) because arbitrarily small constriction 
widths S can occur in the continuum problem. Finally, for small but fixed p - p c  > 0,  

V / L =  p ( j U -  ( p - ~ ~ ) - ” + ’ [ j - j ~ ( p ) I ~  (4) 

as j + j C ( p ) + .  
A standard scaling argument now shows that for p = p c  and large but finite L, the 

voltage drop per unit length scales as V - L 2 - ’ / ” [ j  - j,( L)]’ as j + j,( L ) + ,  and that 
j , (L )  - L-( ’+’ /” ) .  We thus have our final result 7 = 2 in d = 2, a result which is 
remarkably close to our Monte Carlo result 7 = 2.0*0.1 for the discrete problem. 

Our nodes-and-links treatment of the continuum problem is readily extended to 
dimensions higher than 2, and we find that 7 = 2 for all d > 1. It would be most 
interesting to investigate whether this ‘superuniversality’ of the exponent 7 also occurs 
in our original discrete model. 

Our approach can also be applied to a rather different problem in which insulating 
spheres are randomly embedded in a d-dimensional homogeneous medium of our 
non-linear, hysteretic conducting material. As argued by Halperin et a1 [18], the 
conductivity exponent t for this problem differs from that in which conducting spheres 
are randomly embedded in an insulating medium for all d 3 3.  However, the exponent 
t is believed to be the same for these two problems in 2 ~ .  In the nodes-and-links 
approximation the exponents 7 for these problems differ even in d =2:  arguments 
paralleling those given above show that the insulating disc problem has 7 = 3/2,  in 
contrast to our result 7 = 2 for the conducting disc problem. 

Finally, our theory is readily adapted to a variety of continuum breakdown problems. 
For example, consider a conducting material which has resistivity p,  as long as the 
current density remains below a critical valuej,,,. Once the current density rises above 

t The distribution p ( S )  in (3) should really be replaced by the conditional probability that the width is 8, 
given that S 3 S , , , .  Since a,,, is small, this introduces only a small correction. 
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jo,c, however, the material ‘burns out’ and the resistivity increases irreversibly to 
p2 >> pl . We randomly place hyperspheres of this material in a perfectly insulating 
&dimensional medium, and so obtain a continuum variant of the random fuse model 
studied by de Arcangelis er a1 [2]. In contrast to these authors, however, we consider 
the limit p1 + 0 rather than p2 + 00. If the applied voltage is increased continuously in 
an infinite system for p > p c ,  then the voltage drop per unit length is again given by 

as p + p z .  Similar considerations (4) f o r j  just abovejc(p), andj,(p) - ( P  -PA 
apply to a continuum version of the model for dielectric breakdown introduced by 
Takayasu [l]. We hope that these results will lead to Monte Carlo studies of the 
non-linear conductivity in other irreversible breakdown problems. 

( d - l ) (  u + l )  
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